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High-temperature plasticity of cubic-C rare-earth oxides is studied through a study of the 
behaviour of two different dislocations. One is largely dissociated by glide; the other 
dissociates by climb. In both case the stacking fault is the same and is characteristic of the 
cubic-C structure. In the first part, a non-stoichiometric climb model of extended dis- 
location is suggested. Such a model may lead to a recovery process through an unpinning 
mechanism of the dislocations. It has been shown that, depending upon the size of an 
initial cluster, a "super"-jog may be obtained without any activation energy. It is suggested 
that such a climb mechanism may be particularly likely in oxides containing a large 
amount of impurities. In the second part, the climb dissociation is considered. The 
influence of the surrounding network of dislocation has been studied. The results show an 
increase in the climb dissociation width due to the nearest dislocations. As a consequence 
the dislocation is sessile and therefore plays an important role in the high-temperature 
plasticity of these oxides. 

1. Introduction 
There are 15 rare-earth elements in the Periodic 
Table, from lanthanum to lutetium. Most of the 
corresponding oxides are sesquioxides, M203, 
where M represents the rare-earth elements. 
Structures of the rare-earth sesquioxides and their 
possible crystallographic transformations have been 
extensively studied on either bulk material [l] or 
on thin films [2, 3]. The most important structures 
found have been called A (hexagonal), B (mono- 
clinic) and C (cubic), respectively. Some very-high- 
temperature structures, H (hexagonal) and X (not 
well defined) have also been reported. For a given 
temperature, the structure passes from A to B to C 
with increasing atomic number. 

In this work, attention will be focused on the 
cubic-C structure which is sometimes called the 
low-temperature stable modification of cubic 
lanthanide sesquioxides (C-Ln203). In fact, the 
rare-earth oxides having the highest atomic num- 
bers exhibit stable C-structure up to 1800 or 
2000 ~ C [ 1 ]. 

Hitherto, the plastic properties of those oxides 
have not been studied. Furthermore, it is very 

difficult to grow sufficiently large single crystals 
of rare-earth oxides for classical deformation 
tests to be carried out. The problem of cubic rare- 
earth oxide plasticity is therefore dealt with by 
making a close parallel with a sesquioxide which 
exhibits the same structure, the same chemical 
properties, the same point-defect disorder, but 
which is not a rare-earth oxide. This is the yttrium 
sesquioxide, Y20 3. 

It has been possible only recently to grow 
relatively large yttrium oxide single crystals by 
the Verneuil method. These crystals have been 
used in a study of plastic proporties of Y2Oa 
covering a wide range of temperatures and stresses 
[4, 6]. Both the theoretical and experimental 
aspects of Y203 plasticity have revealed interesting 
features from which generalizations may be made 
concerning the cubic-C rare-earth oxides. 

2. The cubic-C structure 
The cubic rare-earth Type-C structure belongs to 
the space group la3. This structure may be 
described as a modified fluorite structure where 
one fourth of the sites in the anion sub-lattice 
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are missing. The unoccupied anion sites form non- 
interecting strings along the four (11 1 )directions 
of the cubic cell. These strings provide relatively 
unimpeded pathways for the migration of oxygen 
ions through the material. The cation sub-lattice 
is f c c  and the lattice parameter is near 1 nm. 
From these crystallographic considerations, and 
taking into account point-defects disorder, a 
clear difference in the diffusion behaviour of 
the two components of those oxides may be 
expected. 

3. Structure and plasticity of the cubic-C 
oxides 

From a crystallographic point of view, the shortest 
Burgers vector of such a structure is b~ =a/2 
(111  ) which is approximately 0.9 nm in length. 
In fact, it has been experimentally shown [4] that 
at least three Burgers vectors intervene in the 
plasticity .of  the cubic-C structure of Y203. 
These vectors are: 

b~ = a/2(1 11)0 .9nm;  
b2 = a ( 1 0 0 )  l .0nm;and 
b3 = a (1 10) l .5nm. 

Furthermore, the longest Burgers vector ba is 
responsible for the easy glide system of the struc- 
ture which is (00 1) (1 10). 

On the other hand, possible stacking faults 
due to imperfect shear have been extensively 
studied [7]. Despite the fact that the stacking 
faults which may be possible in this structure 
seem generally energetic and therefore unlikely, 
an interesting result was obtained with one stacking 
fault which may be described by either the shear 
system a/2 (11 0) (00 1) or by the removal of 
four successive planes in the (001)  stack. 

A theoretical calculation on the basis of a 
purely ionic crystal has therefore been carried out 
on Y2Oa. The corresponding stacking-fault energy, 
Esv, has been found to be surprisingly low for an 
oxide (80 mJ m -2 in Y203). The simple explanation 
is that only the fourth plane-plane interactions 
are modified by this fault. Owing to the stacking- 
fault energy effect on the fine structure of the dis- 
locations concerned, this important result strongly 
suggests that the (0 01)-type planes of the cubic-C 
structure are of prime interest in the study of the 
plastic behaviour of the rare-earth oxides. Exper- 
imental consequences of these particular aspects 
of the structure have been shown in Y2Oa. In fact, 
depending upon stress and temperature range, two 

Burgers vectors, b2 and b3, respectively, play the 
major role in the plastic behaviour. 

4. Dislocation motion in the cubic-C 
oxides 

4.1. Burgers vector, ba = a (1 1 0) 
It has been experimentally shown that dislocations 
whose Burgers vector is b3 = a ( 1 1 0 )  are the 
physical origin of the easy glide system (0 01) 
(1 10) of the cubic-C structure in the high-stress 
and "low"-temperature range [4]. Owing to the 
Burgers vector length (1.5nm), and the corre- 
sponding self energy, this result is quite surprising. 
The physical explanation is the dissociation of 
these dislocations into, at least, two partials, 
separated by the stacking fault ribbon mentioned 
above. It is a glide dissociation which takes place 
in the (001)  planes of the structure. Both high- 
voltage electron microscopy [8] and observations 
using a weak-beam contrast technique [9] support 
these results and show, almost exclusively, edge 
dislocations. The problem now arises of how such 
a largely-dissociated edge dislocation can escape 
when stopped by some obstacle or internal stress, 
in other words, is there any recovery process 
possible with such a configuration of dislocations. 

The problem is dealt with by the application 
of two models: 

(a) A non-stoichiometric climb model of dis- 
locations based on the different behaviour of the 
two sub-lattices [10] ; and 

Co) A climb model of largely-extended dis- 
locations previously developed for low stacking- 
fault energy metals [11 ]. 

4.1.1. Climb model of extended dislocations 
in the cubic-C structure 

The climb model of extended dislocations in the 
cubic-C structure can be outlined by the following 
points: 

(1) An extended gliding dislocation is stopped 
by an obstacle, for instance an impurity (see 
Fig. la). 

(2) Oxygen, which is the faster moving ion, 
diffuses towards or along the dislocation and 
aggregates to form clusters in the lower part of the 
extra half planes of one of the partial dislocations 
(see Figs Ib, 2a and 3a). Owing to the electrical 
neutrality of the crystal, it is suggested that the 
clusters correspond to eight extra half planes of 
either neutral or molecular oxygen. Such clusters 
are postulated to be coherent with the matrix 
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Figure I The different steps of the non-stoichiometric climb model of a dislocation dissociated by glide. White arrows: 
diffusion and aggregation of the faster ion; black arrows: diffusion of the slower ion. 

and their description in terms of  interstitial loops 
is then possible. 

(3) Each of  the "interstitial dislocation loops" 
dissociate into two dislocations by means of  the 
slowest ion, the cation. A crown of  perfect crystal 
is created between the two dislocation loops (see 
Figs lc, 2b and 3b). The Burgers vector of  the 

outer loop is perfect and corresponds to b3 = a 
(1 1 0). 

(4) The outer loop dissociates by glide and 
gives the configuration shown in Figs ld, 2c and 
3c. 

(5) The initial partial dislocation reacts with the 
dissociated outer loop (see Figs lf, 2e and 3d). 

(e) 
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Figure 2 Geometry of the different 
steps of the climb mechanism. 
White arrows: diffusion and aggre- 
gation of the faster ion; black 
arrows: diffusion of the slower ion. 



i I 
i I 
i I 
i I 
I 

I I 

| ram| ~ - - |  m | m m u m |  

i , 
! 

(a) 

I 
I ] 

$ I 

i 

i 
! 
I 

i 
! 
I 

I 
.r 
I 
r 

| m �9 I 

, ' t ! ! I  1 
TI .  T I ! :  ! 
I ' . . T I t  ! T 
i I, I I, I '. �9 i 
�9 ''IT' I ! t z , .  t I �9 I ,',. I . . . .  . =  . . . . . . . . . .  I 

�9 I ' I "  " ! I~  �9 t l .  . . T I I ! ] . I  I 

�9 I I l , l ~  

I:!i!i11~ ~ ' " ' " 1  ~. 

; (b )  ; 

T 
i ! 
I 

i ! 
I 

I 
t 
F 
! 
t 

i 
I 
l 
i 

I 

T 
i 
f ! 
! 
I 
1 

i | 

! 

i 

t ! T  t 
'T  T 

. . . .  [ ;  ; 

(c) 

! 

! 
.t 
I 
i l 
,! 
i 

t 

t 
i 

L ! 
I 

i t 
T T 
i 
T T 
i 
T i 
�9 I 
i T 
r i 
i T 
t i 
.r T 
t �9 

t I 

I I 

, ! 
.i 
L 
L 
L 
I 
T 

i L; 
.tj ! i  

T 
i 

(d) 

! 
I 

i 
I 

L 
I 

r 
I 
! 
L 
.i 
I 
1 
i 
! 

~ m w  

I I 
I | 

I 

T 
i 
T 

i 
I 

I 

r.r 

.I 
I 
I 
I 

Figure 3 S c h e m a t i c  view o f  t h e  c l imb m e c h a n i s m  in t e r m s  o f  ex t r a  ha l f  planes.  

(6) Under the action of stress, the dislocations 
could glide again together with the "super"-jog, 
leaving behind interstitial loops (see Fig. If). 

Such a process may have a linear extension 
along the core of one of  the initial partial dis- 

locations and lead to the whole climb of the dis- 
location. This non-stoichiometric climb model 
of dislocations might be particularly possible 
in impure crystal where impurity sites are not 
only hardening sites through the pinning of the 

ii..... 

C= I / 2  ~ 1 1 ~ >  

Figure 4 G e o m e t r y  o f  t he  b o x -  
like c o n f i g u r a t i o n  used  in t he  
e las t ic -energy c o m p u t a t i o n s .  YD 
is t h e  d i s soc ia t ion  w i d t h  a n d  
x,  y and  z are the  s ides  o f  t h e  
box .  
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Figure 5 Results of the energy 
computations. Elastic energies, 
E, plotted against the dis- 
sociation of the boxqike con- 
figuration. Esf = 80 mJ m-2, 
p = 6.5 X 10 l~ Pa, (a) S = 
(301bl)2; (b) S =  (401b1)2; (c) 
S = (50 Ib I) 2. 
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dislocations bu t  also favourable sites for the 
nucleation of the clusters which trigger the climb 
mechanism. 

In the description of the model, a simplified 
boxqike configuration is obtained (see Fig. 2d). 
If such a configuration does not fully extend 
from one partial dislocation to the other the 

super-jog is not obtained and the trapped dis- 
location cannot escape by further glide. In order 

to have some idea of the critical size from which 
the box-like configuration leads by glide dis- 
sociation to a wholly extended super-jog, the 
corresponding elastic energy has been computed. 
The computer program and the method used have 
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Figure 6 Energy computations of the box-like configur- 
ations. Esf = 350 mJm -2 and p = 3.5 X 10 ~~ Pa. (a) 
S = (41 b 1) 2 ; (b) S = (6 [ b I) z ; (c) S = (10 [b I) 2. 

realistic. Results of  the computat ions are shown in 
Figs 5a, b and c and 6a, b and c. On those curves 
the elastic energy is plot ted against the dissociation 
width of  the box-like configuration (Fig. 4). The 

right-hand axis indicates the shape of  the initial 
cluster through the x/z  ratio. Each figure corre- 
sponds to one cluster surface. 

In the first case, where the stacking-fault energy 
is taken to be equal to 80 mJ m -2 and the shear 
modulus #, is taken to be equal to 6.5 x 101~ Pa, 
it is shown that for an initial surface, s, of  (301b l) 2 
and (40 [b l )  2 it is impossible to obtain a whole 
extended super-jog without  any activation energy. 

From a surface, s, of  (50 Ib I) 2 it is possible to 
obtain such a super-jog only by glide dissociation 

been described elsehwere [11]. Geometry  of  the 
problem and the corresponding Burgers vectors 
are shown in Fig. 4. For  the sake of simplicity, 
the remaining interstitial loop involved in the 
process is not taken into account. The physical 
parameters used are those of  y t t r ium sesquioxide. 

Two cases are considered: 
(i) In the first, room-temperature shear modulus 

and a theoretical predict ion for the stacking-fault 
energy are employed;  

(ii) in the second, high-temperature shear 
modulus and stacking-fault energy deduced from 
electron microscope observations are used. 

This second case seems, in fact, the more 

Figure 7Dislocation associated with loops observed in 
plastically-deformed YzO3 Burgers vector is b 3 = a  
(1 10). 
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Figure 8 Geometry of the dislocation junc- 
tion used in the energy computations. 

from one partial dislocation to the other. The 
more favourable shape corresponds to ratio of  
x/z  higher than two. This means that the initial 
cluster must be an elongated rectangle along the 
dislocation core. The parameters of  Y203 used in 
the computation give then a critical surface, s, of 
(50 IbL) 2 (~  5 nm 2) and a dissociation width of  
the initial dislocation corresponding to 56Lbl 
(56 nm). In this case, those results show that the 
defects involved in the climb mechanism are very 
large and seem therefore to be not very realistic. 

In the second case, the stacking-fault energy is 
taken to be equal to 350 mJ m -2 and g is taken to 
be equal to 3.5 x 101~ Pa. It is shown that the 
whole super-jog is impossible for a surface, s, of  
(4 ibl) 2 but possible for a surface of, s = (6 Ibl) 2 
and an elongated shape. For s = ( 1 0 l b l )  2, the 

super-jog is possible whatever the shape. For 
the critical surface of  s = (6 Ibl) 2, the more 
favourable shape is a rectangle o f  length 101bl and 
width 3.6 Ib I. The dissociation width of  the initial 
dislocation corresponding to 3 5 0 m J m  -2 is 
6.81bl. In this case, the size o f  defects involved 
in the model seems more realistic. 

In fact, in each case, the critical sizes of  the 
cluster leading to a whole super-jog is of  the same 
order of  magnitude as the dislocation width of  the 
initial dislocation. This result is in good agreement 
with those obtained in low stacking-fault energy 
metals [11]. 

The micrograph shown in Fig. 7 has been 
observed by electron microscopy in plastically- 
deformed Y203. The configuration of  both the 
dislocation whose Burgers vector is b3 = a <1 1 0) 
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Figure 9 Dissociation width, h, 
plotted against the dislocation, 
D, length for two sizes (1 gm 
and 5#m) of the dislocation 
network, G. Each point corre- 
sponds to the equilibrium 
energy. Point E indicates the 
minimum energy of the whole 
configuration for G = 5 #m. The 
broken line, Curve A is the 
dissociation width predicted by 
the classical analytical relation 
for infinite dislocations. In these 
results the value of the stacking- 
fault energy predicted by theor- 
etical computations (80 mJ m -2) 
is used. 



Figure 10Equilibrium shapes obtained by the compu- 
tations for Esf  = 80 mJ m-2 and G = 5 ~m. 

and of the associated loops might be explained 
by the non-stoichiometric climb model suggested 
above. 

4.2 .  Burgers vector  b 2 = a <1 0 O) 
It has been experimentally shown that edge dis- 
locations whose Burgers vector is b~ = a  (1 00)  
play a major role in the low-stress and high- 
temperature plasticity of the cubic-C structure. 
A very interesting aspect of such a dislocation is 
its climb dissociation possibility [6]. The initial 
dislocation dissociates into two partial dislocations 
having co-linear Burgers vectors. The stacking- 
fault ribbon belongs to the climb plane of the 
dislocation. Furthermore, the associated stacking 
fault corresponds to the removal of four extra 
(1 00)  planes. It is the stacking fault of low 
energy described above. This non-stoichiometric 
dissociation leads to a hardening process in terms 
of glide and is interpreted as the physical origin 
of  of the rate-controlled high-temperature creep 
mechanism. 

A fundamental process which could give either 
this climb dissociation or, conversely, its con- 
striction has been developed in detail elsewhere 
[10]. In fact, such a dislocation appears mainly 
from the reaction of two other dislocations 
whose Burgers vectors are of the bl = a/2 (1 1 1)- 
type and which form a three-dimensional network 
inside the crystal. It is a dislocation of junction. 

One of the most important factors governing 
the behaviour of this dislocation is its dissociation 
width. It is therefore interesting to study the 
influence of the surrounding dislocation network 

/ ~ L 
Figure 11 Equilibrium shape obtained with the stacking- 
fault energy deduced from electron microscopy obser- 
vations. 

on this parameter. This has been performed in a 
simplified way by means of the same computer 
program as that used above. The geometry of the 
computed configuration is shown in Fig. 8 and the 
results are shown in Figs 9, 10 and 11. In Fig. 9 
the climb dissociation width, h, is plotted against 
the dislocation length, D, for a given size of dis- 
location network, G. Dissociation width predicted 
by the classical analytical relation is shown by the 
broken line, Curve A. The curves corresponding 
to G = 1 and 5 micrometers show, with increased 
D, an increase followed by a plateau of constant 
dissociation width. The minimum energy shape of 
the whole configuration is indicated by Point E 
in Fig. 9. Both values, due to either the theoretical 
or the experimental prediction of stacking-fault 
energy have been used and lead, respectively, to 
the equilibrium shapes shown in Figs 10 and 11. 
From those results it may be deduced that a 
surrounding network tends to substantially increase 
the climb dissociation width of the junction dis- 
locations. Also, the dislocation seems elongated 
compared with the other parts of the network. A 
more sophisticated surrounding network gives 
approximately the same results showing that the 
major part of the interaction energy comes from 
the nearest dislocations. 

The larger the climb dissociation, the more 
difficult a constriction is. Further glide of such a 
dissociated dislocation is questionable. In fact, 
electron microscopy studies have shown that these 
dislocations seem to move easily in a pure climb 
motion. It is still uncertain if a large climb dis- 
sociation width plays an important role in the pure 
climb motion of a dislocation; it has been suggested 
that non-stoichiometric processes could act in this 
way through faulting-unfaulting mechanisms, but 
all these assumptions are open to discussion. 
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5. Conclusion 
Two different dislocations of the cubic-C structure 
which are dissociated by glide and climb, respect- 
ively, have been studied. A non-stoichiometric 
climb model of the dislocation dissociated by 
glide has been proposed and discussed and the 
influence of the surrounding network on the climb 
dissociation width of a dislocation has been studied. 
The models and processes described are developed 
through the example of yttrium sesquioxide. 
Nevertheless, since exactly the same characteristics 
appear with the rare-earth oxides having the 
cubic-C structure, the discussion may therefore be 
generalized to those structures. It is emphasized 
that all the assumptions suggested in this work are 
open to discussion and the conclusion are, of 
course, yet to be supported by experimental 
evidences. 
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